



### The Energy Sector of the Blue Economy

Kristian Petrick eco-union

Workshop, Marseille, 31 May 2017



## Getting an idea of the importance of the sectors (today vs. 2030 globally)





Data: Douglas-Westwood Limited, 2005 & others Figure 1. Rough estimates of the relative sizes of maritime sectors at the global scale based on Gross Domestic Products (GDP) figures from 2005<sup>[1]</sup> and their expected growth to 2030 (projections made by WWF)

Energy



## 44% of the Med area are either contracted or designated for oil & gas exploration (Med Trends)



Figure 3. Current offshore oil and gas exploration and production contracts in the Mediterranean Sea, and active and projected gas pipelines



### Med Trends forcasted high gas production increase



#### Figure 5. Gas production forecast in the Mediterranean Sea, based on past trends (in Million tonnes of oil equivalent). Projection of past trends<sup>[3]</sup>

Energy



# Unclear development of offshore oil and gas activities (not separate from onshore); Egyptian figures are key



Energy



## Increased number of accidents is – according to REMPEC – mainly due to a better compliance to reporting procedures







### Globally about 9% of oil spills come from offshore production

- Bulk of oil spills from maritime traffic (68%) and onshore facilities (23%).
- But in regions with intensive production, related marine pollution can rise to 32%.
- Spills from offshore oil production are mostly small (<7t) or medium (<700t). They occur mainly during loading and discharging operations in ports and oil terminals.
- In May 2011, exploratory drilling in the Leviathan gas well (Israel) caused a major leak of brine (12–14 thousand barrels per day).
- Globally, the majority of well blowouts have occurred during exploratory drilling operations.
- Many new explorations in the Med Sea take place in seismic areas.

Carbon budget



## A third of known, extractable oil, half of gas and over 80% of coal reserves must not be burnt to reach 2°C target



http://newsroom.unfccc.int/unfccc-newsroom/most-fossilfuels-must-stay-in-the-ground-new-study/

2014: UN Secretary General Ban Ki-moon called upon companies to reduce their investment in fossil fuels, or to divest completely.



### **Offshore wind projects can be expected in certain areas**

| <ul> <li>metres per secon</li> <li>&lt; 4.00</li> <li>4.00 - 4.25</li> <li>4.25 - 4.50</li> <li>4.50 - 4.75</li> <li>4.75 - 5.00</li> </ul> | Average wind speed |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 5.00 - 5.25<br>5.25 - 5.50<br>5.50 - 5.75<br>5.75 - 6.00<br>6.00 - 6.25<br>6.25 - 6.50<br>6.50 - 6.75<br>6.75 - 7.00                        |                    |
| 7.00 - 9.00                                                                                                                                 |                    |

Energy



### There are no commercial offshore wind projects in the Med yet





Gusts of change: How effective policy is catalysing a booming offshore wind sector Kristian Petrick IEA-RETD Operating Agent All-Energy 2017, 10 May 2017, Glasgow

IEA-RETD Renewable Energy Technology Deployment







## This study presents a comparative analysis of approaches to offshore wind development internationally

#### **Policy & Regulation:**

- Which policy and regulatory frameworks have been most effective in catalysing growth?
- How can policymakers effectively balance the risk profile for developers and government?

#### **Industry Structures:**

- How and why have industry structures evolved over time?
- What can policymakers do to support the development of robust industry structures?

#### **Project Risk Management:**

- How can developers manage risk throughout the project lifecycle?
- Which developer models and strategies have been most successful?





### Offshore wind can achieve several government objectives



#### **Decarbonisation:**

- Clean, renewable source of electricity
- Highly scalable

#### **Energy security & system benefits:**

- High load factors (40-50%)
- Flexible generation

#### **Costs to consumers:**

- Considerable cost reduction achieved and further expected
- Expected to be 'subsidy free' in Europe within next decade

#### Local economic benefits:

- Align with industrial strategy
- Job creation & safeguarding



## Offshore wind is a rapidly maturing energy technology, with deployment set to almost triple from 2015 to 2020



Source: 4coffshore, WindEurope, Carbon Trust analysis Notes: Pipeline reflects central deployment scenario

#### www.iea-retd.org



### **Cost reduction targets have been exceeded ahead of schedule**



\* The Crown Estate (TCE) Cost Reduction Pathways (2011)

\*\* Cost Reduction Monitoring Framework (2017)

\*\*\* Includes grid connection and site development costs for NL and DK projects (uplift of €14/MWh). It should be noted that many of the 'actual' projects reaching FID (financial investment decision) have not yet been built.



### Six key pillars of policy to support offshore wind development



www.iea-retd.org



## Market scale and visibility is widely considered the most important policy driver

- Lack of visibility creates uncertainty and increased risk for developers, suppliers, and investors
- Need to integrate offshore wind policy within long-term energy strategy
- Need to provide visibility over long time horizons
- Targets must be supported with appropriate policy levers
- Short to medium-term roadmaps can hedge against long-term uncertainty (e.g. NL)

Netherlands Offshore Wind Roadmap

- Roadmap with phased deployment over 5 year period
- Driven by National Energy Agreement to install 4.45 GW by 2023
- •5x 700 MW sites identified, de-risked, and tendered annually
- •Call to increase targets by and beyond 2023



## Centralised development models can de-risk offshore wind projects for developers

|          | Zone<br>identification | Site selection | Site<br>investigation | Consenting/<br>permitting | Grid<br>application             | Grid design<br>&<br>construction | Government<br>risk/control | Developer<br>risk/control |
|----------|------------------------|----------------|-----------------------|---------------------------|---------------------------------|----------------------------------|----------------------------|---------------------------|
|          | Crown Estate           | Developer      | Developer             | Developer<br>via PINs     | Developer /<br>National<br>Grid | Developer/<br>OFTO               | Low                        | High                      |
| EEG 2014 | Government             | Developer      | Developer             | Developer<br>via BSH      | TSO                             | TSO                              |                            |                           |
| EEG 2017 | Government             | Government     | Government            | Developer<br>via BSH      | TSO                             | TSO                              |                            |                           |
|          | Government             | Government     | Government            | Government                | Government<br>/TSO              | TSO                              | High                       | Low                       |

Key: Green = Governm./TSO responsibility; Amber = Developer responsibility, PINs: planning inspectorates, BSH: Federal Maritime and Hydrographic Agency.

- Response to higher allocation risk from competitive auctions
- Centralised models require considerable capacity building within government & TSOs
- Some developers have a preference for greater control of development activities, particularly offshore transmission assets (risk of government inefficiency)
- Site-specific tendering can also introduce greater **portfolio risk**

#### www.iea-retd.org



### Grid policy is heavily influenced by local context



*Key: Blue = TSO responsibility; Amber = Developer responsibility* 

- Decentralised developer-build ('deep charging') models can result in lower cost point-to-point transmission assets
- Centralised TSO-build ('shallow charging') approaches can help with strategic coordination of power transmission to ease onshore grid constraints. More amenable to offshore hubs and interconnection.



## Incentive mechanisms evolve with technology and market maturity

| Demonstration projects |                                                                                                                                     |   | Early commercial projects                                                                                                               | <u> </u> | Large-scale commercial projects                                                                                                                   |  |  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                        |                                                                                                                                     |   | Maturity                                                                                                                                |          |                                                                                                                                                   |  |  |
|                        | Capital grants                                                                                                                      |   | Fixed off-take contracts                                                                                                                |          | Competitive auctions                                                                                                                              |  |  |
| •                      | Supports early projects where costs<br>are uncertain due to lack of<br>experience<br>E.g. UK Offshore Wind Capital<br>Grants Scheme | • | Market-based mechanism<br>Provides commercial returns for<br>developers, based on energy<br>generation<br>E.g. Feed-in premium; UK ROCs | •        | Increased competition encourages<br>cost reduction<br>Auction budgets can help to control<br>government spend<br>E.g. UK Contracts for Difference |  |  |

- Governments take on higher risk in immature stages, shifting risk to developers as the technology matures
- Growing technology maturity means that emerging markets are expected to go straight to fixed off-take or competitive auctions
- Limited market maturity may be a barrier to competitive auctions in more isolated markets



## European countries have benefitted from clustering around the North Sea region



- Isolated emerging markets will face greater challenges in developing robust industry structures
- Tailored policy support is required to develop necessary industry structures



### **Key Findings and recommendations**

- Offshore wind is on the cusp of sharp growth and marked cost reduction
- Industry is entering a market maturation phase in Europe
- Emerging markets will face greater challenges in developing robust industry structures
- Development has been underpinned by supportive policy frameworks
- Two emergent policy trends are evident:
  - 1. Competitive auctions
  - 2. Centralised development models
- These policy trends are having a material impact on the risk profile for developers
- Capacity constrained auctions necessitate greater government de-risking

Continued policy support and industry collaboration will be critical to maintaining cost reduction and expanding offshore wind to new markets.

## THANK YOU!

#### For additional information on RETD

www.iea-retd.org Online: info@iea-retd.org Contact: kristian.petrick@iea-retd.org



Μ





CARBON TRUST



### **Apparently no sufficient OTEC potential in the Med**





# Estimation of Offshore share by country (own calculation based on IEA data and some Med Trends assumptions)

| Country      | 2015*[Mtoe] | Percentage offshore of<br>total production<br>(estimated) | Offshore Production<br>[Mtoe], estimated |
|--------------|-------------|-----------------------------------------------------------|------------------------------------------|
| Egypt gas    | 41          | 80,0%                                                     | 33                                       |
| Egypt oil    | 36          | 71,4%                                                     | 25                                       |
| Libya gas    | 11          | 66,7%                                                     | 8                                        |
| Israel gas   | 7           | 80,0%                                                     | 5                                        |
| Italy gas    | 6           | 66,0%                                                     | 4                                        |
| Tunisia oil  | 3           | 80,0%                                                     | 2                                        |
| Turkey oil   | 3           | 80,0%                                                     | 2                                        |
| Libya oil    | 20          | 6,4%                                                      | 1                                        |
| Italy oil    | 6           | 16,0%                                                     | 1                                        |
| Algeria gas  | 75          | 1,0%                                                      | 1                                        |
| Algeria oil  | 68          | 1,0%                                                      | 1                                        |
| Spain oil    | 0           | 100,0%                                                    | 0                                        |
| Greece oil   | 0           | 100,0%                                                    | 0                                        |
| Spain gas    | 0           | 100,0%                                                    | 0                                        |
| Israel oil   | 0           | 20,0%                                                     | 0                                        |
| Greece gas   | 0           | 100,0%                                                    | 0                                        |
| France oil   | 1           | 0,0%                                                      | 0                                        |
| Turkey gas   | 0           | 0,0%                                                      | 0                                        |
| France gas   | 0           | 0,0%                                                      | 0                                        |
| Slovenia gas | 0           | 0,0%                                                      | 0                                        |
| Slovenia oil | 0           | 0,0%                                                      | 0                                        |
| Total        | 277         |                                                           | 84                                       |



### Also in 2016 no offshore developments in Med Sea

