Adriatic Ionian ecoregion (AIE)

Climate Change on Coastal Zones

Definition

Climate change refers to a system’s exposure to climate variations altering land and sea temperatures and precipitation quantity and patterns, resulting in the increase of global average sea level, risks of coastal erosion and an expected increase in the severity of weather-related natural disasters (ESPON Climate, 2011; CEC, 2009).

Regional context - How will climate variability & change affect coastal areas?

According to recent studies including the reports of the Intergovernmental Panel on Climate Change (IPCC), climate variability and change would have adverse impacts in the Mediterranean region. Phenomena such as sea level rise, recurrent and persistent droughts, overall decrease in precipitation, salt water intrusion, salinisation of groundwater, more intense rainfall over fewer days causing floods and soil erosion, serious long-term decrease of soil moisture and productivity accelerating desertification, are expected to intensify significantly in this region with time.

Such phenomena are expected to impact the natural environment and biodiversity in the region threatening important wetlands and habitats that safeguard the overall ecological balance, and consequently the provision of ecosystem services and goods on which people’s livelihoods depend. These impacts will be intensively felt particularly in the Mediterranean coastal zones.

Related Pressures

- Intense rainfall (extreme events)
- Sea level rise
- Coastal erosion
- Changes in thermal and salinity regime
- Introduction of non-indigenous species and translocations
For the eastern Adriatic coast, the Human Development Report (UNDP) analyzed through modelling the area and type of land that would be covered by sea due to climate change phenomena. The study was developed according to two scenarios: 50 and 88 cm sea level rise. Preliminary results show that, for the first scenario, more of 100 km2 of the mainland will be flooded while an additional 12 Km2 will be lost according to the second scenario (SHAPE, 2013a). Furthermore, several areas were identified potentially vulnerable to sea level rise at the Croatian coast, namely cities (i.e. Nin, Zadar, area of Šibenik), rivers (i.e. Rasa, Cetina, Krka), lakes (i.e. Vransko – Cres island), western Istria coast as well as the island of Krapajn (SHAPE, 2013a).

Though the results of the two models differ considerably in terms of the degree of sea level rise, the models agree that coastal regions will be affected.

One of the most recent climate change models is represented by CIRCE (2011), applied on the Mediterranean to forecast the whole climate evolution in the region during this century. According to CIRCE projections in the period 2021-2050, climate change might induce a mean strict sea level rise, ranging between +7 and +12 cm in the Adriatic sea (S. Gualdi et al., 2013), with respect to the period of reference (1961-1990) (Gualdi et al, 2013).

Data/Indicator used

Two sub-indicators are developed to assess the impacts of climate change on the Adriatic Ionian ecoregion:

- the sub-indicator on climate change pressure on the Sea,
- the sub-indicator of climate pressure on coastal areas (land).

The sub-indicator assessing the pressure on Marine environment due
The climate change pressure on marine environment is calculated based on the combination of variables [SST] and [SLR]. The values of each variable are normalized and summed using an equal weight. The layers are summed by a weighted sum (same weight is set to combine both variables - the decision of applying a different weight needs further expert consultation). The resulting assessment ranges between 1 and 10, being 10 the highest pressure value.

For coastal areas, the ESPON Climate indicator “Aggregate impact of climate change on Europe’s regions” was used (ESPON 2011) without modification. In addition, the classification and categories assigned are kept the same as set by ESPON.

List of proposed indicators

The following table lists the indicator developed and mapped within Med-IAMER on the impacts of climate change on coastal (land) and marine environments. The maps, identified by the indicator ID, can be found at the project's web page: http://www.medmaritimeprojects.eu/section/med-iamer-redirect/outputs

<table>
<thead>
<tr>
<th>ID</th>
<th>Indicator description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC01</td>
<td>Combined pressure of climate change</td>
</tr>
</tbody>
</table>

Bibliography

IUCN/UNEP/MAP/RAC-SPA (2013) “Mediterranean Marine Protected Areas and Climate Change”

