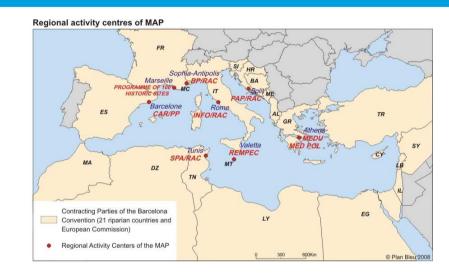


Plan Bleu pour l'environnement et le développement en Méditerranée

Treated
wastewater reuse
strategies in the
Mediterranean

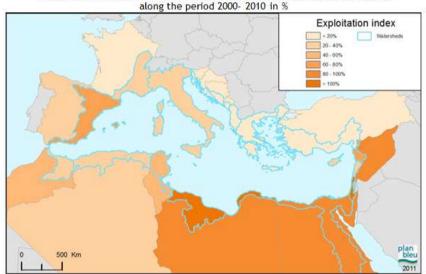
Dr. Céline Dubreuil-Imbert Programme officer for water


Euro-Mediterranean sectorial cooperation seminar on environmental goods and technologies

Brussels, 3 July 2013

What is the Plan Bleu?

- A Regional activity centre attached to the Mediterranean Action Plan (MAP – 1976), first-ever UNEP Regional Seas Programme
- Created 30 years ago as a systemic and prospective analysis centre in the Mediterranean

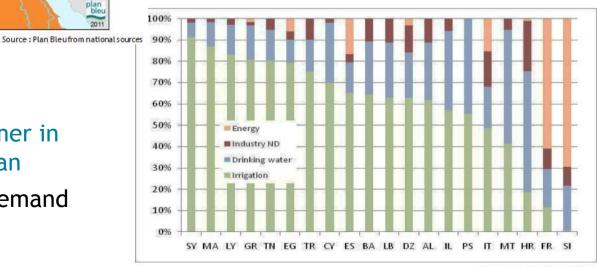


Plan Bleu's mandate:

- Producing information and knowledge in order to alert decision makers and stakeholders to the environmental challenges in the Mediterranean
- Drawing up scenarios for the future to assist in the decision making process
- → Political translation in the Mediterranean Strategy for Sustainable Development

Mediterranean context: Increasing pressures on water resources

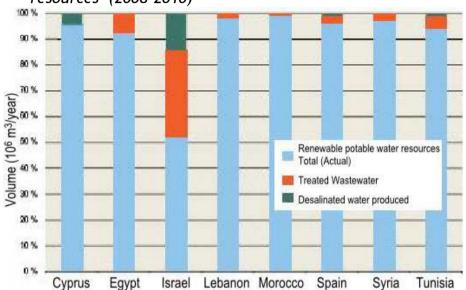
Exploitation Index of renewable natural resources(countries and watersheds)


Over-exploitation of renewable water

(Egypt, Israel, Jordan, Libya, Malta, Syria, Palestinian territories)

Water demand by sector (period 2005-2010)

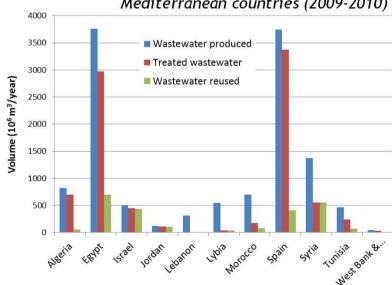
Agriculture
higher water consumer in
the Mediterranean


64% of Total water demand

Source: Plan Bleu from national so

Treated wastewater reuse in the Mediterranean

Relative share of conventional and non conventional water resources (2008-2010)


Source : Plan Bleu 2012

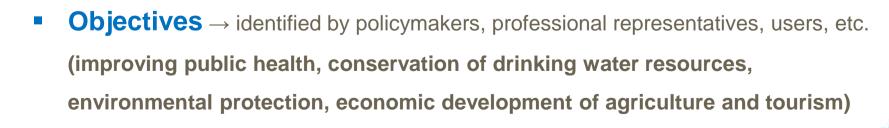
Israel: among the Mediterranean leaders in TWWR

2003, TWWR ↔ 14% water total demand (20% in 2012; 24% in 2050)

- Proportion of TWW low / volume of potential reuse
- 65% of conventional water resources used for agriculture irrigation in Medit.
- >80% in SEMCs

Wastewater Treatment and Reuse in Mediterranean countries (2009-2010)

Source: GCC water statistics book, 2010, FAO-Aquastat 2009


TWWR applications and examples in the Mediterranean

Irrigation	Irrigation of food and non-food crops Landscape irrigation: parks, golf courses, residential areas, etc. Forest irrigation Land treatment
	Ex.: Crops and/or forest irrigation (Spain, France, Israel, Italy, Jordan)
Preservation of the Environment	Ex.: Landscape irrigation of golf courses, green or urban areas (Hammamet, Tunisia) Aquifer recharge Augmentation of surface water Fight against salt intrusion Recreational and environmental uses (lakes, etc.)
Industrial Uses	Recycling (cooling water, process water, etc.) Construction Ex.: Industrial use (Morocco, mining site of the Office Chérifien des Phosphates) (see Box 2)
Urban Uses excluding irrigation (separate distribution system)	Toilet flushing (on-site reuse) Cooling water for air conditioning Firefighting Ornamental use Street and road maintenance Car washing Ex.: Greywater recycling (Cyprus,
Drinking Water	Indirect reuse through augmentation of surface water Direct reuse (combined with conventional drinking water)
Other Uses	Firefighting, artificial snow, etc.

Drivers, Context and Strategic Objectives of TWWR projects

- **Drivers** → major structural changes (e.g. increased water scarcity, stronger urban development, expansion of irrigated agriculture)
- **Context** → specific to each country or local situation (political, economic, regulatory, health conditions, type of agriculture, available volume of water resources, sanitation coverage)

WWTP Prat del Llobregat (Cataluña) (Source: © Soliclima 2005-2009)

Example of Tunisia

- Increasing water pressure
 - → 1980s: Program for wastewater treatment and reuse for irrigation (Medjerba Basin), and facilities installed in 11 major Tunisian cities
 - → Creation of the National Sanitation Utility (ONAS)
- Irrigation with untreated wastewater forbidden in 1975, and TWWR standards formulated in 1989

Nebeur Dam in Tunisia (Source: Econostrum)

- Programs to mobilize conventional resources → construction of 20 dams, 220 mountain reservoirs and lakes, 50,000 wells and 20,000 bore wells and modernization of irrigation practices (efficient sprinklers systems)
- 1980-90s, overextraction of groundwater and deteriorated quality of coastal aquifers
 - → implementation of pilot sites for aquifer recharge by TWWR (ex. Nabeul region in 1985 & 2007)
 - → development of sanitation and TWWR programs
- Development of tourism → consequences in terms of water quality standards and new recreational areas → development of TWWR use in golf courses and green areas.

Obstacles and Success Factors of TWWR strategies

Obstacles related to:

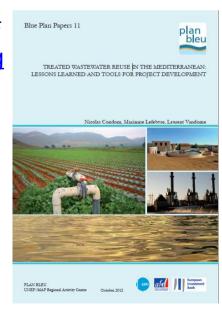
- Complexity of TWWR (cross-sector issues);
- Institutional and organizational context (no common authority, lack of coordination, lack of TWWR strategy)
- Legislative and regulatory framework (inexistent, not adapted to local contexts);
- Competition between TWW and conventional water
- Difficulty to combine supply and demand planning over time and space;
- Inadequate storage capacity and sanitation capacity;
- Risks of soil salinization and water pollution;
- Inadequate tariff policy and limited financial capacity;
- Lack of a « project methodology », of training and of communication;
- Negative perception and unacceptability;
- Inadequate monitoring, controls and evaluation;

Obstacles and Success Factors of TWWR strategies

Success factors include:

- Operational institutions working together in a coordinated approach on TWWR;
- Appropriate and progressive regulations that take into account the constraints of irrigation users (balancing health and food production/soil management concerns);
- An integrated water resources management (IWRM) policy, a health and environmental policy;
- Adequate and efficient treatment systems;
- Public acceptance;
- Economic and financial viability of projects.

5 Key recommendations


- 1. Adopting a holistic, multidisciplinary and bottom-up approach
- Following an adapted, phased « project approach » considering the irrigation system (water-soil-plant-people) as an integral part of the wastewater treatment and reuse process
- 3. Adopting measures to reduce and control health and environmental risks
- 4. Evaluating all externalities through private and social cost-benefit analyses
- 5. Organising specific training and awareness programs for each group of actors

Thank you for your attention

For more information:

www.planbleu.org

