Creating Shared National Water Data Management Systems towards a Mediterranean Water Knowledge Hub

Technical workshop on integrated water resources management (IWRM) indicators

Sep 30th - Oct 1st 2013, Barcelona

IWRM Framework & Water Management System

Eng. Mona Fakih, Water Director
Eng. Abbas Fayad, Water expert
Ministry of Energy and Water- Lebanon
MEW & IWRM Planning in Lebanon
Progress & achievements

- IWRM concepts and approaches have been introduced in Lebanon in the late 90s and have inspired:
 - Gathering political will and support for IWRM and the planning process;
 - Creation of a framework for broad stakeholder participation
- Preparation of the National Water Sector Strategy (NWSS) aligns with IWRM principles (approved March 2012)
- MED EUWI Country Policy Dialogue on IWRM in Lebanon (Phase I - concluded in 2009; Phase II (2010 - ongoing)
MEW & IWRM Planning in Lebanon Progress & achievements (2)

- The Water Code - a cooperation programme between the Lebanese and the French Government
 - Aims to tackle and recommends provisions for the implementation of sustainable management of water resources
 - Following a comprehensive and integrated framework for governance, institutional and management issues

- The Water Code has been submitted to the Council of Ministers for approval.
IWRM Conceptual Framework (MEW Lebanon)

Data Inventory (Assimilation)
Hydrology, watershed physical and physiographic, climatic, water use/demand, water quality, water systems, agriculture, land use/cover, socio-economic, etc

Legislative Framework
Laws, Policies, Legislations, Regulations

Decision Support System (DSS)
Modeling / Analysis (e.g. WEAP)
Analysis (Spatial, GIS)

Database (Spatial and temporal)

Acceptance
Institutional Framework
Institutions, public involvement, NGO’s, etc

Feedback
Communication

Endorsement

Planning, Management, Decision Making
Planning: MEW, CDR, LRA, MOA, Stakeholders...
Investment: (CDR, MEW, MOF...)
Operation: (WE, LRA, Municipalities...)

Monitoring System
(MEW, WE, LRA, MOE, MOA)
Insights (Data/ Information)

- Collection of available data
 - analysis of water resources situation (availability, uses, needs, etc);
- Preparation of integrated water resources management scenarios:
 - base for decision-making
 - creation and operation of a DSS model for selected Lebanese river basins;
- The DSS maximizes information retrieval, analysis and visualisation
 - Integration of the needs of different sectors that compete for the same water resources (e.g. drinking water sectors, supply and sanitation, industry, agriculture, tourism, the environment, etc)
 - Development of water uses scenarios and resources development, presenting different alternatives and the assessment of these scenarios on their social, economic, environmental and sustainability aspects.
Available Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Reference</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watershed physical characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watershed area</td>
<td>sq km</td>
<td>Catchment, Sub-catchment</td>
<td>Geometry, Attributes</td>
</tr>
<tr>
<td>Rivers, streams, springs</td>
<td>Variable</td>
<td>River / RS</td>
<td>Geometry, time series</td>
</tr>
<tr>
<td>Lakes</td>
<td>Variable</td>
<td>Base Maps/ RS</td>
<td>Geometry, time series</td>
</tr>
<tr>
<td>Dams</td>
<td>Variable</td>
<td>Base maps</td>
<td>Geometry, time series</td>
</tr>
<tr>
<td>Wells</td>
<td>Variable</td>
<td>Extraction points</td>
<td>Geometry, time series</td>
</tr>
<tr>
<td>Watershed physiographic characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kc, RRF, PFD</td>
<td>-</td>
<td>Land cover/Topography</td>
<td>Geometry, Attributes</td>
</tr>
<tr>
<td>Water capacity/ Conductivity (surface & deep)</td>
<td>Cm, mm/month</td>
<td>Soil / Geology/Hydrogeology</td>
<td>Geometry, Attributes</td>
</tr>
<tr>
<td>Ground water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aquifer capacity</td>
<td>MCM</td>
<td>Geology/Hydrogeology</td>
<td>Geometry, Attributes</td>
</tr>
<tr>
<td>Aquifer conductivity</td>
<td>mm/month</td>
<td>Geology/Hydrogeology</td>
<td>Geometry, Attributes</td>
</tr>
<tr>
<td>Aquifer depth</td>
<td>m</td>
<td>Hydrogeologic maps</td>
<td>Geometry, Attributes</td>
</tr>
<tr>
<td>Climate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precipitation</td>
<td>mm/month</td>
<td>Hydro/Climatic stations</td>
<td>Time series</td>
</tr>
<tr>
<td>ET/ Evaporation</td>
<td>mm/month</td>
<td>Catchment</td>
<td>Time series</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C</td>
<td>Catchment</td>
<td>Time series</td>
</tr>
<tr>
<td>Wind</td>
<td>m/s</td>
<td>Catchment</td>
<td>Time series</td>
</tr>
<tr>
<td>Humidity</td>
<td>%</td>
<td>Catchment</td>
<td>Time series</td>
</tr>
<tr>
<td>Water Use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop water requirement, Urban consumption…</td>
<td>M3/ha</td>
<td>Demand zone</td>
<td>Geometry, Time series, Attributes</td>
</tr>
<tr>
<td>Waste water treatment plants</td>
<td>Capacity, operation</td>
<td>Water dataset</td>
<td>Attributes</td>
</tr>
<tr>
<td>Lake, dams</td>
<td>Capacity, operation</td>
<td>Water dataset</td>
<td>Attributes</td>
</tr>
<tr>
<td>Supply network</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
From data to Information

DSS

Components

Hydrology

Water Resources

Scenarios

Water Quality

Economy

Indicators

Precipitation, ET, Temperature

Flow, Infiltration, Recharge

Water use/demand/supply

Future/Climate projections

Physical, chemical, biological

Water pricing

Analysis

Meteorology

Hydrology

Water resources

Integrated

Provisional

Provisional
Evaluation of alternatives?

- Answer questions related to:
 - Water quantity
 - How to decrease water deficit in specific areas?
 - Increase water use efficiency for urban consumption?
 - Increase water efficiency in agricultural practices?
 - Decrease water shortage during summer and dry periods?
 - Water quality (Provisional)
 - Quantify point source and non-point sources pollution? waste water impacts
 - Quantify urban, industrial waste water impacts?
 - How to increase water quality for urban and agricultural supply?
Evaluation of Measures (Provisional)

- Interventions to increase water quantity
 - structural, non-structural actions
 - Change in management practices
- Interventions to increase water quality
 - Construct Infrastructures
 - Change in management practices
- Intervention by using regulations and policies
Where we stand from a complete IWRM?

- **For surface water:**
 - Mapping of the location and boundaries of water resources (e.g. watersheds, rivers, streams, wells, etc);
 - Assessing climate and hydrologic variables;
 - Assessing physiographic and physical hydrologic variables;
 - Detection of baseline conditions for surface water resource (i.e. hydrologic cycle)

- **For groundwater:**
 - Mapping of the location and boundaries of groundwater resources (i.e. geologic, and hydrogeological analysis);
 - Detection of baseline conditions for ground water resource

- **Scenario analysis**
 - Water resource management, operations, and planning
 - Climate variability and change analysis
 - Stakeholder consultations / water users contribution

<table>
<thead>
<tr>
<th>Completed</th>
<th>Ongoing</th>
<th>Planned</th>
</tr>
</thead>
</table>
Where we stand from a complete IWRM? (2)

- Preparation of a summary of significant pressures and impact related to human activity on the status of surface water and groundwater including:
 - estimation of pressures on the quantitative status of water including abstractions,
 - analysis of other impacts related to human activities on the water system;
 - estimation of point source pollution,
 - estimation of diffuse source pollution
- Identification of direct stresses and main drivers:
 - Water shortage
 - Natural (e.g. drought),
 - Man-made (e.g. pollution)
 - Social, capital, etc
- Identification of indirect impacts
 - Human health, overexploitation of resources, degradation of ecosystems
- Recognizing of long-term potential impacts
 - cultural deterioration, land degradation, loss of biodiversity
- Preparation of a socio-economic analysis of water use

Completed Ongoing Planned
Where we stand from a complete IWRM? (3)

- Defining the main environmental objectives
- Preparation of key potential programs and measures
 - Achieve adequate management of water resources (both as Quantity & Quality)
- Development of a management plan
Future Directives (Indicators)

- Continue the assessment of the status of surface and ground water resources nationwide
- Automation of the collection and analysis of:
 - Hydrologic and meteorologic data/information
 - Water resources information
 - Water quality and pollution indicators
 - Agricultural water management

- Development and monitoring of water plans
 - 5 years and 10 years plans
MEW (IWRM Priorities)

- Involve stakeholder participation in decision making
 - Development of Multiple Workshops & Trainings
- Complete stakeholder needs assessment
- Develop Water Resource Management Plan
 - Develop a set of programs and measures
 - Develop a comprehensive monitoring plan
Data Sharing

- Outputs from the DSS and data from the MEW database:
 - Provide information:
 - Water demand/analysis
 - Hydrologic simulations (e.g. surface runoff, ground water recharge, ET, GW/SW interaction, etc)
 - Reservoir (dam) operation
 - Water demand/use and hydrologic forecasts
 - Climate change impact analysis